The Effect of dye-dye interactions on the spatial resolution of single-molecule FRET measurements in nucleic acids.

نویسندگان

  • Nicolas Di Fiori
  • Amit Meller
چکیده

We study the effect of dye-dye interactions in labeled double-stranded DNA molecules on the Förster resonance energy transfer (FRET) efficiency at the single-molecule level. An extensive analysis of internally labeled double-stranded DNA molecules in bulk and at the single-molecule level reveals that donor-acceptor absolute distances can be reliably extracted down to approximately 3-nm separation, provided that dye-dye quenching is accounted for. At these short separations, we find significant long-lived fluorescence fluctuations among discrete levels originating from the simultaneous and synchronous quenching of both dyes. By comparing four different donor-acceptor dye pairs (TMR-ATTO647N, Cy3-ATTO647N, TMR-Cy5, and Cy3-Cy5), we find that this phenomenon depends on the nature of the dye pair used, with the cyanine pair Cy3-Cy5 showing the least amount of fluctuations. The significance of these results is twofold: First, they illustrate that when dye-dye quenching is accounted for, single-molecule FRET can be used to accurately measure inter-dye distances, even at short separations. Second, these results are useful when deciding which dye pairs to use for nucleic acids analyses using FRET.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orientational and dynamical heterogeneity of rhodamine 6G terminally attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy.

The comparison of Förster resonance energy transfer (FRET) efficiencies between two fluorophores covalently attached to a single protein or DNA molecule is an elegant approach for deducing information about their structural and dynamical heterogeneity. For a more detailed structural interpretation of single-molecule FRET assays, information about the positions as well as the dynamics of the dye...

متن کامل

Single-Molecule Imaging With One Color Fluorescence.

Single-molecule fluorescence imaging is a powerful tool that enables real-time observation of DNA-protein or RNA-protein interactions with a nanometer precision. Here, we provide a detailed procedure for a previously developed single-molecule fluorescence method, termed "single-molecule protein-induced fluorescence enhancement" (smPIFE). While smFRET (Förster resonance energy transfer) requires...

متن کامل

A FRET-based analysis of SNPs without fluorescent probes.

Fluorescence resonance energy transfer (FRET) is a simple procedure for detecting specific DNA sequences, and is therefore used in many fields. However, the cost is relatively high, because FRET-based methods usually require fluorescent probes. We have designed a cost-effective way of using FRET, and developed a novel approach for the genotyping of single nucleotide polymorphisms (SNPs) and all...

متن کامل

Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions.

Single molecule studies of protein-nucleic acid interactions shed light on molecular mechanisms and kinetics involved in protein binding, translocation, and unwinding of DNA and RNA substrates. In this review, we provide an overview of a single molecule fluorescence method, termed "protein induced fluorescence enhancement" (PIFE). Unlike FRET where two dyes are required, PIFE employs a single d...

متن کامل

Single-molecule FRET measures bends and kinks in DNA.

We present advances in the use of single-molecule FRET measurements with flexibly linked dyes to derive full 3D structures of DNA constructs based on absolute distances. The resolution obtained by this single-molecule approach harbours the potential to study in detail also protein- or damage-induced DNA bending. If one is to generate a geometric structural model, distances between fixed positio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 98 10  شماره 

صفحات  -

تاریخ انتشار 2010